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3D MODEL CONTROL OF IMAGE PROCESSING
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INTRODUCTION

Telerobotics studies remote control of distant robots by a human operator

using supervisory or direct control. Even if the robotic manipulator has vision

or other senses, problems arise involving control, communications, and delay

[18]. The communication delays that may be expected with telerobots working in

space stations while being controlled from an Earth laboratory have led to a

number of experiments attempting to circumvent the problem (Fig. i). This delay

in communication is a main motivating factor in moving from well-understood

instantaneous hands-on manual control to less well-understood supervisory

control [5,7]; the ultimate step would be the realization of a fully autonomous

robot.
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METHODS

Hardware_Setup: Two a-robots (Armatron robots), modified to interface with

an AT-386 computer [13,20] via parallel I/O ports, are controlled by computer in

an autonomous mode. Manual control capability is preserved for teaching and for

the supervisory mode, since hands-on control is vital in developing and

evaluating different control algorithms. Both a-robots operate within a one-

cubic-meter working environment. One of the robots (painted dark blue) is

fitted with ONSNEs features (Fig. 2, left panel). Three cameras were used; one,

an inexpensive C-mounted TV camera (Panasonic, model WV-1410); the others,

commercially available 8mm camcorders (Sanyo, model VM-10). They provided two

orthogonal side and top views, and an oblique view (Fig. 2, left panel). The

computer selected among the camera views by means of a four-channel video multi-

plexer, whose output was connected to a simple frame grabber (Epix-Silicon

Video, Chicago). The frame grabber resided in the AT bus and was directly

controlled by the computer to digitize video images into 320 x 240 arrays of 8-
bit pixels.

Software: Besides the main program performing administrative work, three

major pieces of software were developed to control the mobile a-robot in

obtaining a given target with visual feedback. These consisted of the ICM, 3DM,

and utility programs. The ICM program included many different low-level image

processing algorithms such as edge enhancement, feature extraction, automatic

thresholding, filtering, moments computation. The 3DM program supported a

complete, scaled-down model of the a-robot and its RWE. It also provided 2D

projections of different camera views, and contained an algorithm for simple

path planning. The utility software was highly optimized, and consisted of all

the primitive functions for the frame grabber, EGA graphic display and plotter.
All software was written in "C".

RESULTS: THE 3D MODEL

At the local earth station, the human operator views a display of the 3D

model and uses the control panel in a supervisory mode to oversee the control

algorithms (Fig. i). At the remote space station, the control parameters drive

the robots in the robot working environment (RWE). These control parameters also

drive the cameras and the image processing algorithms. Besides a local feedback

process, the main feedback is from the remote image processing to the Earth
station 3D model.

A remote RWE is modeled using graphics workstation (Iris) with 3D graphic

transformation support hardware (Fig. 3). At the RWE, three a-robots perform

tasks; the m-robot (Mitsubishi manipulator) holds a camera and actively

searches for optimum views. This experimental set-up provides us with a global

view of the telerobotics control situation wherein several robots cooperate in a

joint task, or each robot has an individual task assigned (Fig. 3). The 3D model

is constructed from information about the robotic manipulators, the work pieces,

and the camera positions [17]. The 3D model guides .the image processor in

extracting information derived from regions-of-interest (ROI) which contain on-

the-scene visual enhancements (OSCNE) (Fig. 2, left); note the model with on-

the-screen visual enhancements (OSCRN) [i0,ii] for use by the human operator
(Fig. 2, right).
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Fig. 2 Perspective views and orthogona[ projections of a-robot

(left) and model (right) showing on-the-scene visual enhancements

(OSCNE). 3D model guides image processor to extract information

only in regions-of-interest.
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Fig. 3. Perspective view of vectorgraphic model of three a-robots and one m-robot.

Feature_selection_criteria_and_RQI$_lOG_ion$: An important step in using

top-down image processing to control robots is to specify the most useful

information to be gained from the robot and its environment, and to determine

the physical location of these features. These selections strongly influence

not only the choice of information processing strategies, but also the image

processing schemes employed.

Supposing that links of a robot are known or fixed, the kinematic recovery

of the 3D robot model simply requires the joint location information. Any two

consecutive joints of a robot provide complete information about the link length

and orientation. In situations where the robot joint is not visible to the

system, link orientation becomes important. In complex, multiple-robot

environments, the image processing computer faces the far more challenging

problems of occlusions, light reflections, shadows, noises, etc. Although the

model uses a priori knowledge that plays an active role in resolving many of

these problems, image processing tasks can be further simplified by introducing

ONSNEs to both robots and the RWE (Fig. 4). These ONSNEs boost video signal to

noise ratios within ROIs, and also may provide redundant information depending

on their sizes and shapes.

Assianment_of_ROIs_locations: Each orthogonal projection view of the robot

and its RWE has two sets of ROIs, the primary and secondary sets (Fig. 4). For

the side view, the primary set (Fig. 4, upper) of ROIs is responsible for

information about robot joints, while the secondary set of ROIs determines the

robot orientations (Fig. 4, lower). Under static conditions, sizes of ROIs

depend on those of ONSNEs. Since processing time is directly proportional to

ROIs areas, ROIs should be small to minimize processing time, yet large enough

to cover individual ONSNEs within ROIs. For automatic thresholding, optimum-size

ROIs areas would be twice that of ONSNEs.
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Fig. 4 Orthogonal views of actual robot reaching a target.

While centroids of OSNCEs, resided within ROIs, provide feedback

information for model to guide robot to target.
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RESULTS : 2D IMAGE PROCESSING

Imaue_Drocessinu__ooeratinu__within__RQI_: As mentioned earlier, selected

features determined both the locations of ROIs and the image processing schemes

within them [13,19]. For instance, detecting angles of a robot link includes two

steps: edge enhancement and line detection. The edge enhancement operation

accentuates edges and acts like a two-dimensional high pass filter. Edge

detection has been an active area of research for many years, and this continues

today. Several algorithms for edge detection, such as Sobel, Kirsch, Roberts,

and the Laplacian [6,8,14,16], are available and already implemented in VLSI

devices [15]. These are simple operators in the form of 3 x 3 matrices. Another

edge detection algorithm also worth mentioning is the Laplacian of the Gaussian

[12]. This algorithm detects local edges effectively, and has been proven to be

an optimum operator in dealing with true edges and noisy images [3].

Unfortunately, this operator requires a much larger kernel and, therefore, is

computationally expensive. Since Sobel operators operate in pairs (the x and y

directions independently), noise tends to be suppressed in one direction, while

edges are accentuated in the other direction [15]. Due to their insensitivity

to noises, simplicity io implementation, and efficiency in operation, the Sobel

operators were incorporated into our scheme for low-level image processing in

detecting edges.

Enhanced edges, resulting after Sobel operation, contain much higher

intensity levels than the average. Therefore, appropriate threshold levels can

be easily found, either by manual selection aided by histogram displays, or

automatically by a thresholding algorithm. Threshold operations transform a

gray level image into a binary image with two levels of intensity. Only

enhanced edges above the threshold level remain after thresholding and are then

ready for line detection. Orientation of a line can be retrieved by a number of

algorithms such as matched filters, cross-correlation, or the Hough transform.

Among these techniques, the Hough transform combined with top-down information

from the model renders line information quite reliably and efficiently.

Centroid_moment_Drocessinu__for_the__primary__s@$_of_ROI@: Visual information

residing in the primary set of ROIs provides sufficient feedback information for

model adjustment and correction. Image processing carried out for this set of

ROIs takes precedence over many other tasks, including control of the robots

(Fig. 3, right panel; Fig. 4). Because of the strategic importance of this

critical joint information, the ONSNEs were introduced (Fig. 3). The ONSNEs

yield higher contrast in the video images, and thus more reliable visual

information can be obtained under various luminance conditions.

Centroid_and_other_invariant_moments: The ONSNEs also have had a strong

influence on the selection of the low-level image processing < 3 scheme used

the invariant moments, a method in which centroids are derived. This

technique had been previously applied to pattern recognition for printed

characters [1,9], to chromosome analysis [2,4], and biological instrumentation

[20]. The first three order moments yield information about size, centroid

location, and major axis orientation for a bounded object; they are simple in

implementation and inexpensive in computation. Additional higher order moments

are also available for shape description, features that cannot be acquired from

other low-level imaging schemes. Furthermore, the centroid parameters provide

excellent information for local feedback (see Fig. i), a special requirement for

our image processing scheme.
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Moments are widely utilized in classical mechanics; moments of a

distribution function are also commonly used in statistical theory. For a given

bounded, two-dimensional function f (x,y), the set of moments is defined as

Mi, j = xly 3 flx, y) dx dy, (i)
i, j -- O, I, 2 ....

In the infinte set [Mi, j] moments, as i and j take all non-negative values,

uniquely determining the function f(x,y); and conversely, f(x,y) uniquely

determines the set [Mi, j]. [i+j] is the order of the moment.

For binary images in which intensity of the object bounded by f(x,y) is one

and zero elsewhere, the zeroth order moment M00
##

MOO = II f(x,y) dx dy
(2)

is the area of the object. Coordinates of the centroid are found to be,

xc = MI0/M00 (3)

yc = M01/M00

where MI0 and M01 are the first moments for x and y respectively. Moments

computed after translation of the origin to the center of gravity, are called

central moments,
I/

mij = II (x-xc)i (y-yc) j f(x,y) dx dy (4)

For digitial image processing, equations (i) and (4) above, become

Mij-  xiy j fCx,
Y

mij = E _ (X-Xc) i (Y-Yc)j f(x,y) (6)
Y

The second order central moments are [6]

mll = MII - YC MI0

m20 = M20 - x C MI0

m02 = M02 - YC M01

(7 .a)

(7 .b)

(7 .c)

The object orientation or principal axis of rotation about this axis causes the

second-order central moments to vanish [8,9]

theta = (tan -I (2mll/(m20-m02)) / 2 (8)

All the area-normalized central moments relative to this principle axis are

invariant under magnification, location, and rotation of the object [6,9].

RESULTS: AUTONOMOUS CONTROL

Control robot seuuence: There are a number of different paths via which

the robot can reach the target. However, for the purpose of this study, we

derived a simple but effective algorithm to enable the 3D model to control the

robot and to direct the image processing computer. The scheme worked

satisfactorily regardless of initial positions and orientations of both robot

and target. The process to reach a target consisted of two phases, the

orientation phase and acquiring phase. To reach a designated target, the robot
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Fig. 5. Model approaching target: In the autonomous mode, upon

receiving co, and to reach target, robot first performs

orientation and then position relative to the target. Top: robot
rotates to safe zone location. Middle: Then moves forward to this

point. Bottom: Rotates to align with target.
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first rotated (Fig. 5, upper view) until its new direction intersected with

target direction at the safe zone location (Fig. 5; Fig. 3, right panel ---

large plus signs superimposed on target approach line). Next the robot moved

forward until it reached this location (Fig. 5, middle view). It then performed

a second rotation so that its direction aligned with the target direction (Fig.

5, lower view). Thus the robot completed the first orientation phase in

approaching the target. Since accuracy was not crucial in this phase, visual

update was more relaxed and faster control speed could be obtained. Once the

direction of the robot was in alignment with its target, the second phase began.

The image processing computer immediately switched to a fast operating mode,

closing the feedback loop. The 3D knowledge model carefully cruised the robot

and guided the robot gripper to finally acquire the target (Fig. 2,4,5).

DISCUSSION

Since all tasks have been performed by the AT-386, our programs have grown

close to the limit of the MS-DOS capability. Compromises have had to be made

among competitive issues such as performance, memory utilization and

implementation of new schemes. To alleviate this problem, the 3D knowledge-

based model will be ported over to the SUN-386 workstation acting as the local

control station (Fig. i). It will oversee the image processing tasks and the

control of the robots that will remain with the AT 386 computer in the remote

station. The Iris graphics workstation will provide the display to the human

operator at the earth laboratory.
Future research will include systematic benchmnark studies for the various

image processing schemes as they fail while becoming subject to extreme

conditions. Controllable cameras and wider working environments for the robots

will also be utilized.

In conclusion, the top-down approach [20] with 3D model control plays a

crucial role in resolving many conflicting image processing problems that are

inherent in the bottom-up approach of most current machine vision processes.

The 3D model control approach is also capable of providing the necessary visual

feedback information for both the control algorithms and for the human operator.

Finally, it provides an extreme reduction in communication, the mostly needed

feature in telerobotics applications.
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